MATHEMATICAL REASONING

STATEMENTS:-

A sentence is called a statement, if it is either true or false but not both an its truth or falseness can be definitely decided upon without ambiguity. It is also called a mathematically acceptable statement.

SIMPLE STATEMENT:-

A statement which cannot be broken into two statements is called a simple statement. NEGATION:-

If a statement p is true, its negation would be false and vice versa, Negation of p is denoted by \sim p.

If p is true ,we say it has truthvalue T and If p is false ,we say it has truthvalue F.
COMPOUND STATEMENT USING CONNECTIVES:-
Some simple statements are combined to yield a new statement called a compound statement.
Connectives: 'OR' and 'AND'
CONJUNCTION:- Conjunction of p and q is denoted by symbol $p \wedge q$.
DISJUNCTION:- Disjunction of p or q is denoted by symbol $p \vee q$.
INCLUSIVE SENSE:- i.e. In higher secondary science stream a student can opt for mathematics or biology. (A student can opt fir both the subject.)

EXCLUSIVE SENSE:- i.e. Bharat will go abroad for further studies or will study advanced mathematics in India immediately after passing $12^{\text {th }}$ standard. (Both the action cannot take place at the same time.)

QUANTIFIERS AD NEGATIONS:-

The use of phrases like 'there exists' and 'for all' or 'for every' is abundant in mathematics. These phrases are called quantifiers.

The phrases	symbol	Name of phrases
'there exists' and 'for all'	\forall	Universal quantifier
'for every'	\exists	Existential quantifier

Negations of Universal quantifier and Existential quantifier:-

Let p be any statement.

statement	symbol
$\sim($ for all $p)=$ there exist $\sim \mathrm{p}$.	$\sim(\forall \mathrm{p})=\exists(\sim \mathrm{P})$
\sim (there exist p$)=$ for all $\sim \mathrm{p}$.	$\sim(\exists \mathrm{p})=\forall(\sim \mathrm{P})$

Implication (Conditional) statement:- 'if p, then q ' is called implication and is denoted by $p \Rightarrow q$.
When p is true and q is false then $p \Rightarrow q$ is false and true otherwise.
Double Implication (Biconditional) statement:- ' p if and only if q ' is called double implication and is denoted by $\mathrm{p} \Leftrightarrow \mathrm{q}$.

When $p \Leftrightarrow q$ is true if both p and q are true or both are false and false otherwise.
Equivalent statement:- $p \Rightarrow q$ is equivalent to $\sim q \Rightarrow \sim p$.
Contrapositive statement:- $\sim q \Rightarrow \sim p$ is contrapositive statement of $p \Rightarrow$.
Converse of $p \Rightarrow q$ is $q \Rightarrow p$.
Rule: (1) $\sim(\sim p)=p$
(2) $\sim(p \wedge q)=(\sim p) \vee(\sim q)$
(3) $\sim(p \vee q)=(\sim p) \wedge(\sim q)$
(4) $\mathrm{p} \Rightarrow \mathrm{q}=(\sim \mathrm{p}) \vee \mathrm{q}=\sim \mathrm{q} \Rightarrow \sim \mathrm{p}$
(5) $\quad \sim(p \Rightarrow q)=p \wedge(\sim q)$
(6) $\quad(p \Leftrightarrow q)=(q \Leftrightarrow p)$

$$
\begin{aligned}
& =(p \Rightarrow q) \wedge(q \Rightarrow p) \\
& =(\sim p \vee q) \wedge(\sim q \vee p)
\end{aligned}
$$

$$
\begin{align*}
\sim(p \Leftrightarrow q) & =(p \wedge \sim q) \wedge(q \wedge \sim p) \tag{7}\\
& =p \Leftrightarrow(\sim q) \\
& =q \Leftrightarrow(\sim p)
\end{align*}
$$

$\mathrm{N}=$ the set of all natural numbers. $=\{1,2,3,4, \ldots\}$
$Z=$ the set of all integers. $=\{\ldots-2,-1,0,1,2, \ldots\}$
$Q=$ the set of all rational numbers.
$R=$ the set of real numbers.
(1) Listing Method (Roster Form):- i.e. $\mathrm{N}=\{1,2,3, \ldots\}$
(2) Property Method (Set Builder Form):- We have denoted by
$\{x / P(x)\}=\{x /$ The property of $x\}$
If we write, $M=\{x / x$ is an integer, $-2<x<3\}=\{-1,0,1,2\}$
(3) A set consisting of only one element is called a singleton.
(4) A set which does not contain any element is called an empty set (or null set)

An empty set I denoted by $\}$ or \varnothing.
(5) A set which is not empty is called a non-empty set.
(6) Generally when we consider many sets of similar nature, the element in the sets are selected from a definite set. This set is called the universal set and it is denoted by \mathbf{U}.
(7) $\quad A$ set A is said to be subset of a set B if every element of A is also an element set B and is denoted by $\mathrm{A} \subset \mathrm{B}$.

Logical notation :- $(\forall x, x \in A \Rightarrow x \in B) \Rightarrow A \subset B$.
If set has n element the number of subsets is 2^{n}.
Theorem 2.1 A A. Theorem 2.2 For any set A, $\varnothing \subset$ A.
(8) Any non-empty set has at least two subset namely \varnothing and the set itself. These subsets are called improper subsets. Other subsets (if any) of a set are called proper subset.

If set has $n(n>1)$ element the number of proper subsets is $2^{n}-2$.
(9) If set A is a subset of a set B, then set B is called a superset of A.
(10) For any set A, the set consisting of all the subset of a is called the power set of A and it is denoted by $\mathrm{P}(\mathrm{A})$ or 2^{A}.
$P(A)=\{B / B \subset A\}$. If set has n element the number of power set is 2^{n}.
The power set of any set is never an empty set.
(11) Subsets of set of real numbers:- $\mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathrm{R}$
(12) The set of all irrational numbers:- I $=\{x / x \in R, x \notin Q\}$
i.e. I is the set of real numbers that are not rationals.
(13) Interval:- $a, b \in R$
$(a, b)=\{x / x \in R, a<x<b\} \quad$ (open interval)

$(-\infty, 0]=$ Set of negative real numbers.
$(-\infty, \infty)=\mathrm{R}$
$(a, \infty)=\{x / x \in R, x>a\}$
$[a, \infty)=\{x / x \in R, x \geq a\}$
$(-\infty, a)=\{x / x \in R, x<a\}$
$(-\infty, a]=\{x / x \in R, x \leq a\}$
(14) Equal sets:- If $A \subset B$ and $B \subset A$ then $A=B$.

OR If $\forall x, x \in A \Rightarrow x \in B$ and $\forall x, x \in B \Rightarrow x \in A$ then $A=B$.
(15) Operation of Sets:- (a) Union:- $A \cup B=\{x / x \in A$ or $x \in B\}$
(b) Intersection:- $A \cap B=\{x / x \in A$ and $x \in B\}$
(c) Complementation:- $A^{\prime}=\{x / x \in U$ and $x \notin A\}$
(d) Difference set:- $\quad A-B=\{x / x \in A$ and $x \notin B\}$
(e) Symmetric Difference set:- $\mathrm{A} \Delta \mathrm{B}=(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})$

De Morgan's Laws:- $(a) \quad(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(b) $\quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

	Union	Intersection

1. Binary Operation	$(A \cup B) \in P(U)$	$(A \cap B) \in P(U)$
2.	$A \subset(A \cup B)$ and $B \subset(A \cup$ B	$(A \cap B) \subset A$ and $(A \cap B) \subset B$
3. Idempotent law	$A \cup A=A$	$A \cap A=A$
4. If $A \subset B$ and $C \subset D$ then	$(A \cup C) \subset(B \cup D)$	$(A \cap C) \subset(B \cap D)$
5. Commutative law	$A \cup B=B \cup A$	$(A \cup B) \cup C=A \cup(B \cup C)$
6. Associative law	$A \cup \varnothing=A$ thus \varnothing is identity element	$A \cap U=U$ thus U is identity element
7. Identity element	$(A \cup U)=U$	$(A \cap \varnothing)=\varnothing$
8.		

$\oplus \quad$ An Important Result:-If $A \subset B$ then $A \cup B=B$ and $A \cap B=A$.

	Complementation	Difference set	Symmetric Difference set
1	$\mathrm{~A}^{\prime} \in \mathrm{P}(\mathrm{U})$	$\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}$	$\mathrm{A} \Delta \mathrm{B}=(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})$
2	$\mathrm{~A} \cap \mathrm{~A}^{\prime}=\varnothing, \mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$	$\mathrm{A}-\mathrm{B} \neq \mathrm{B}-\mathrm{A}$	$\mathrm{A} \Delta \mathrm{B}=\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \cup\left(\mathrm{B} \cap \mathrm{A}^{\prime}\right)$
3	$\varnothing^{\prime}=\mathrm{U}, \mathrm{U}^{\prime}=\varnothing$	$\mathrm{U}-\mathrm{A}=\mathrm{A}^{\prime}$	$\mathrm{A} \Delta \mathrm{B}=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cap \mathrm{B})^{\prime}$
4	$\left(\mathrm{~A}^{\prime}\right)^{\prime}=\mathrm{A}$	$\mathrm{A} \subset \mathrm{B} \Rightarrow \mathrm{A}-\mathrm{B}=\varnothing$	$\mathrm{A} \Delta \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$
			$\mathrm{A} \Delta \mathrm{B}=\mathrm{B} \Delta \mathrm{A}$

Cartesian Product of Sets:-Let A and B be two non-empty sets. Then the set of all ordered pairs (x, y), where $x \in A$ and $y \in B$ is called Cartesian product of A and B. It is denoted by $A \times$ B. (read: 'A cross B')
$\oplus \quad$ If A or B or both are empty sets then we take $A \times B=\varnothing$.
$\oplus \quad A \times A=A^{2}$.
$\oplus \quad A \times B \times C=\{(x, y, z) / x \in A, y \in B, z \in C\}$
(20) Number of elements of a Finite Set:-

Number of elements in a finite set $A=n(A)$.
$\oplus \quad$ If A and B are disjoint set then $n(A \cup B)=n(A)+n(B)$
$\oplus \quad$ If $A \cap B=B \cap C=A \cap C=\varnothing$ then $n(A \cup B \cup C)=n(A)+n(B)+n(C)$
$\oplus \quad$ If $A \cap B \neq \varnothing$ then $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$\oplus \quad$ If $A \cap B \neq \varnothing$ then $n(A)=n(A-B)+n(A \cap B)$
$\oplus \quad$ If $A \cap B \neq \varnothing$ then $n(B)=n(B-A)+n(A \cap B)$

CHAPTER:- 3

RELATIONS AND FUNCTIONS

(1) Relation:- For any non-empty sets A and B, a subset of $A \times B$ is called a relation from A to B.
$\oplus \quad n(A)=m$ and $n(B)=n \Rightarrow n(A \times B)=m n$
$\oplus \quad$ The number of subsets of $A \times B=2^{m n}$, hence $2^{m n}$ relations are possible from A to B.

Neighbourhood: If $p, a, b \in R, a<b$ and $p \in(a, b)$ then (a, b) is called a neighbourhood of p.
δ-neighbourhood of $\mathrm{a}:-\mathrm{N}(\mathrm{a}, \delta)=(\mathrm{a}-\delta, \mathrm{a}+\delta), \mathrm{a} \in \mathrm{R}, \mathrm{a} \in \mathrm{R}, \delta>0$. (mid point of segment)
Deleted δ-neighbourhood:- $\mathrm{N}^{*}(\mathrm{a}, \delta)=(\mathrm{a}-\delta, \mathrm{a}) \cup(\mathrm{a}, \mathrm{a}+\delta), \mathrm{a} \in \mathrm{R}, \delta>0$.

$$
\mathrm{N}^{*}(\mathrm{a}, \delta)=\{\mathrm{x} / 0<|\mathrm{x}-\mathrm{a}|<\delta, \mathrm{x} \in \mathrm{R}\}
$$

Important Result : - (1)

$$
|x| \leq a \Leftrightarrow-a \leq x \leq a, x \in R, a \in R^{+}
$$

$$
\begin{align*}
& |x| \geq a \Leftrightarrow x \leq-a \quad \text { OR } x \geq a \tag{2}\\
& (x-a)(x-b) \leq 0 \Leftrightarrow a \leq x \leq b \tag{3}
\end{align*}
$$

$$
\begin{align*}
& (x-a)(x-b)>0 \Leftrightarrow x \leq a \text { OR } x \geq b . \tag{4}\\
& |x-a|<\delta \Leftrightarrow a-\delta<x<a+\delta . \tag{5}
\end{align*}
$$

$N(a, \delta)=(a-\delta, a+\delta) \rightarrow$ Interval form

$$
\begin{aligned}
& =\{x / a-\delta<x<a+\delta, x \in R\} \rightarrow \quad \text { Inequality form } \\
& =\{x / 0 \leq|x-a|<\delta\} \rightarrow \quad \text { Modulus form }
\end{aligned}
$$

Some properties of δ - neighbourhood :-
(1) If $0<\delta_{1}<\delta_{2}$, then $N\left(a, \delta_{1}\right) \subset N\left(a, \delta_{2}\right)$, $a \in R$.
(2) If $a \neq b ; a, b \in R$, there exists a neighbourhood $N\left(a, \delta_{1}\right)$ of a and a neighbourhood $N\left(b, \delta_{1}\right)$ of b such that $N\left(a, \delta_{1}\right) \cap N\left(b, \delta_{2}\right)=\varnothing$.
(3) There is a δ-neighbourhood of p contained in any neighbourhood of p.
$\rightarrow \quad$ if (a, b) is a neighbourhood of p and $\delta=\min \{p-a, b-a\}$ then $(p-\delta, P+\delta) \subset(a, b)$. Thus $N(p, \delta) \subset(a, b)$.

Fundamental Principle of counting : \rightarrow (Principle)
If an event can occur in n different ways, followed by another event which can occur in m different ways then the total number of different ways in which both the events can occur in nm.

Linear Permutation $: \rightarrow$ A liner permutation of n objects taken $r(1 \leq r \leq n)$ at a time is an arrangement in a line, in a definite order, of r objects taken at a time, from n distinct object, and is denoted by npr .

$$
\begin{aligned}
& { }^{n} \mathrm{P}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{p}_{\mathrm{r}}=\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) \ldots(\mathrm{n}-\mathrm{r}+1)=\frac{n!}{(n-r)!} \\
& \rightarrow \quad \mathrm{nPn}=\mathrm{n}!
\end{aligned}
$$

$\rightarrow \quad$ The product of the first n natural numbers, that is $1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n$

Is called n-factorial and is denoted $n!O R\llcorner n$.
$\rightarrow \quad n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n, \quad 0!=1$
Permutation with Repetition : \rightarrow The number of ways of arranging n thing in m places, repetition being allowed, is n^{m}.

Permutations of Identical Objects : \rightarrow Of the given n objects, p_{1} are identical, p_{2} are also identical but different from the p1 objects. Lastly p_{k} object are identical, but different from the pervious ones, and $p_{1}+p_{2}+p_{3}+\ldots+P_{k}=n$. Then the number of distinct permutations of these n objects is $\frac{n!}{p_{1}!\cdot p_{2}!\cdot p_{3}!\cdot \ldots \cdot p_{k}!}$.

Circular Permutation : \rightarrow An ordered arrangement on a circle is called a circular permutation.
$\rightarrow \quad$ There are $(n-1)$! Circular permutations of n objects, taken all at a time.
Combination: \rightarrow
An r-combination of n different objects is a selection of r objects at a time, out of n, irrective of the order of the selection.
$\rightarrow\binom{n}{r}={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\mathrm{C}(\mathrm{n}, \mathrm{r})=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!\mathrm{r}!}, 0 \leq \mathrm{r} \leq \mathrm{n}$.
$\rightarrow\binom{n}{n}=\binom{n}{0}=1$
$\rightarrow\binom{n}{r}=\binom{n}{n-r}$
$\rightarrow\binom{n}{r}+\binom{n}{n-1}=\binom{n+1}{r}$
$\rightarrow \quad$ The value of $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots$ first increase and decrease. If n is even, then $\binom{n}{r}$ is maximum at $r=\frac{n}{2}$ and then the values decrease in the same order in which they occurred earlier.

If n is odd, then $\binom{n}{\frac{n-1}{2}},\binom{n}{\frac{n+1}{2}}$ are equal and maximum. There after, the values decrease in the same order.
$\rightarrow \quad$ For given $\mathrm{n}, \mathrm{r} \in \mathrm{N},\binom{n}{r}=\mathrm{k}, \mathrm{k} \in \mathrm{N}$ dose not have more then two solution.
For example, $\binom{4}{r}=15$ has no solution, $\binom{4}{r}=6$ has only one solution, $r=2 .\binom{4}{r}=4$ has two solution, $r=1$ and $r=2$.

Pascal's Triangle : \rightarrow

0
1

2
3
$\begin{array}{llllll}4 & 1 & 4 & 6 & 4 & 1\end{array}$
$\begin{array}{lllllll}5 & 1 & 5 & 10 & 10 & 5 & 1\end{array}$
$\begin{array}{llllllll}6 & 1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$

The numbers in Pascal triangle are precisely the same numbers as the coefficients of binomial expansion.

$$
\begin{array}{cc}
(x+y)^{0}=\mathbf{1} & \text { 0th row } \\
(x+y)^{1}=\mathbf{1} x+\mathbf{1} y & \text { 1st row } \\
(x+y)^{2}=\mathbf{1} x^{2}+\mathbf{2 x y + 1} y^{2} & \text { 2nd row } \\
(x+y)^{3}=\mathbf{1} x^{3}+3 x^{2} y+\mathbf{3 x y ^ { 2 } + \mathbf { 1 } y ^ { 2 }} & \text { 3rd row } \\
(x+y)^{4}=\mathbf{1} x^{4}+\mathbf{4} x^{3} y+\mathbf{6} x^{2} y^{2}+\mathbf{4} x y^{3}+\mathbf{1} y^{4} & \text { 4th row } \\
(x+y)^{5}=\mathbf{1} x^{5}+\mathbf{5} x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+\mathbf{1} y^{5} & \text { 5th row }
\end{array}
$$

Pascal's Triangle [Magic 11's]

If a row is made into a single number by using each element as a digit of the number (carrying over when an element itself has more than one digit), the number is equal to 11 to the nth power or 11^{n} when n is the number of the row the multi-digit number was taken from.

| Row $\#$ | Formula | $=$ | Multi-Digit number |
| :--- | :---: | :---: | :---: |$|$ Actual Row

Binomial Theorem : $\rightarrow \mathrm{n} \in \mathrm{N}$,
$\rightarrow \quad(a+b)^{n}=\binom{n}{a} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+\binom{n}{n} b^{n}$
$\rightarrow(a-b)^{n}=\binom{n}{a} a^{n}-\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+(-1)^{r}\binom{n}{r} a^{n-r} b^{r}+\ldots+(-1)^{n}\binom{n}{n} b^{n}$
$\rightarrow(1+\mathrm{x})^{\mathrm{n}}=\binom{\mathrm{n}}{0}+\binom{\mathrm{n}}{1} \mathrm{x}+\binom{\mathrm{n}}{2} \mathrm{x}^{2}+\ldots+\binom{\mathrm{n}}{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+\ldots+\binom{\mathrm{n}}{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$
$\rightarrow \mathrm{T}_{\mathrm{r}+1}(\mathrm{Term})=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}, 0 \leq \mathrm{r} \leq \mathrm{n}$
\rightarrow If n is even, the $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ term is middle one.
\rightarrow If n is odd, then there are two middle terms, $\left(\frac{n+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$.
\rightarrow If a constant term, the index of x is zero.
\rightarrow The Binomial coefficients: $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots\binom{n}{n}$.
$\rightarrow\binom{\mathrm{n}}{0}+\binom{\mathrm{n}}{1}+\binom{\mathrm{n}}{2}+\ldots+\binom{\mathrm{n}}{\mathrm{n}}=2^{\mathrm{n}}, \forall \mathrm{n} \in \mathrm{N}$.
$\rightarrow\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots=\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots=2^{n-1}, \forall n \in N$

The Set $R \times R$ is the set of ordered pairs of real number $R X R=\{(a, b) / a \in R, b \in R\}$

1. Equality : $a=c, b=d \Rightarrow(a, b)=(c, d)$
2. Addition: $(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$
3. Multiplication: $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$

The set $R \times R$ with these rules is called the set of complex numbers and it is denoted by C.
Generally, we denote a complex number by z .

Properties :-

	Algebraic	Multiplication
1.Closure	$z_{1}+z_{2} \in C$	$Z_{1.2} 2 \in C$
2.Commutative	$\mathbf{Z} 1+\mathrm{Z} 2=\mathbf{Z} 2+\mathbf{Z} 1$	Z $1 . \mathrm{Z} 2=\mathbf{Z} 2 . \mathrm{Z} 1$
3. Associative	$\begin{aligned} & \left(Z_{1}+Z_{2}\right)+Z_{3}= \\ & Z_{1}+\left(Z_{2}+Z_{3}\right. \end{aligned}$	$\begin{aligned} & \left(Z_{1} Z_{2}\right) Z_{3}= \\ & Z_{1}\left(Z_{2} Z_{3}\right) \end{aligned}$
4. Identity	$(0,0)$ is called additive identity or zero	(1,0) is called multiplicative

	complex number. $z+0=z=0+z$ The additive identity 0 is unique.	identity. $z(1,0)=z=(1,0) z$ The multiplicative identity ($1,0)$ is unique.
5. Inverse	The complex number $z=($ $a, b)$ the corresponds complex number (a, - b), denoted by z called the additive inverse of z. $z+(-z)=0$	The non-zero complex number $z=(a, b)$ the corresponds complex number $\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)$ denoted by z^{-1} called the multiplicative inverse of z. $z \cdot z^{-1}=(1,0)=z^{-1} \cdot z$ z^{-1} is denoted by $\frac{1}{z}$.
6.The distributive laws	(a) $Z_{1}\left(Z_{2}+Z_{3}\right)=Z_{1} Z_{2}+Z_{1} Z_{3}$ (b) $\left(Z_{1}+Z_{2}\right) Z_{3}=Z_{1} Z_{3}+Z_{2} Z_{3}$	

$\rightarrow \mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathrm{R} \subset \mathrm{C}$
$\rightarrow R$ is a Subset of C.
$\rightarrow \quad$ In the year 1737 Euler was first person to introduce the symbol i for the complex number.
$\rightarrow \quad \mathrm{i}=(0,1)$ is called imaginary number.
$\rightarrow \quad$ Representation of Complex number :-

$$
z=(x, y)=x+i y=\operatorname{Re}(z)+i \operatorname{lm}(z)=r(\cos \theta+i \sin \theta)
$$

$\}(x, y)$ is order pair. $x \in R, y \in R$
$\} x$ is called real part of complex number and is denoted by $\operatorname{Re}(z)$.
$\} \mathrm{y}$ is called imaginary part of complex number and is denoted by $\operatorname{Im}(z)$.
$\} x=r \cos \theta$ and $y=r \sin \theta$. Here $r=\sqrt{x^{2}+y^{2}},-\pi<\theta \leq \pi$.
Two Complex Number: $\mathrm{z}_{1}=\mathrm{a}+\mathrm{bi}, \mathrm{z}_{2}=\mathrm{c}+\mathrm{di}$

Equality of two Complex Number	$\mathrm{z}_{1}=\mathrm{z}_{2} \Rightarrow(\mathrm{a}, \mathrm{b})=(\mathrm{c}, \mathrm{d}) \Rightarrow \mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$
Addition of two Complex Number	$\mathrm{Z}_{1}+\mathrm{Z}_{2}=(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$
Difference of two Complex Number	$z_{1}-z_{2}=(a, b)-(c, d)=(a-c, b-d)$
Multiplication of two Complex Number	$\mathrm{z}_{1} \cdot \mathrm{z}_{2}=(\mathrm{ac}-\mathrm{bd}, \mathrm{ad}+\mathrm{bc})=(\mathrm{ac}-\mathrm{bd})+(\mathrm{ad}+\mathrm{bc}) \mathrm{i}$
Quotient of two Complex number	$\frac{z_{1}}{z_{2}}=z_{1 .} .2^{-1}$
Powers of i	In general \downarrow
	$\mathrm{i}=\sqrt{-1}$ $\mathrm{i}^{4 \mathrm{k}}=1$
	 $\mathrm{i}^{2}=-1$ $\mathrm{i}^{4 k+1}=\mathrm{i}$
	 3$=-\mathrm{i} \quad \mathrm{i}^{4 \mathrm{k}+2}=-1$
	 $\mathrm{i}^{4}=1$ $\mathrm{i}^{4 \mathrm{k}+3}=-\mathrm{i}$
Conjugate of a Complex Number	$\bar{z}=a-b i=(a,-b)$
Modulus of a Complex Number	$\|z\|=\sqrt{a^{2}+b^{2}}$

Properties of Conjugate Complex Number :

1. $(\bar{z})=z$
2. $\frac{z+\bar{z}}{2}=\operatorname{Re}(z)$
3. $\frac{z-\bar{z}}{2}=\operatorname{Im}(z)$
4. $z=\bar{z}$ if and only if z is real.
5. $\bar{z}=-z$ if and only if z is purely imaginary.
6. $\overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}$
7. $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$
8. $\overline{\left(\frac{z 1}{z 2}\right)}=\frac{\overline{z 1}}{\overline{z 2}}$, where $z 2 \neq 0$

Properties of Modulus:

1. $|z|=0$ if and only if $z=0$.
2. $|z| \geq|\operatorname{Re}(z)| ;|z| \geq|\operatorname{Im}(z)|$
3. $z \bar{z}=|z|^{2}$
4. $|z|=|\bar{z}|$
5. $|z|=|-z|$
6. $\frac{z_{1}}{z_{2}}=\frac{z_{1} \overline{z_{2}}}{\left|\overline{z_{2}}\right|^{2}}$, where $z_{2} \neq 0$
7. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
8. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$, where $z_{2} \neq 0$
9. $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
10. $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
$\rightarrow \quad z=r(\cos \theta+i \sin \theta)$ is called poler form complex number z. Also θ is known as amplitude or argument of z. It is denoted by $\arg (z)$.
$\rightarrow \quad$ Value of θ satisfying $x=r \cos \theta$ and $y=r \sin \theta ;-\pi<\theta \leq \pi$ is knownas the principal valueof $\arg (z)$
$\rightarrow \quad$ Argument of complex number 0 is not defined.
$\rightarrow \quad \arg (x+i 0)=\left\{\begin{array}{cc}0, & \text { if } x>0 \\ \pi, & \text { if } x<0\end{array}\right.$
$\rightarrow \quad \arg (0+i y)= \begin{cases}\frac{\pi}{2}, & \text { if } y>0 \\ -\frac{\pi}{2}, & \text { if } y<0\end{cases}$
$\rightarrow \quad$ Argument of positive real number is 0 and that of negative real number is π.
\rightarrow Argument of purely imaginary number yi is $\frac{\pi}{2}$ and $-\frac{\pi}{2}$ according as $\mathrm{y}>0$ or $\mathrm{y}<0$ resp..

Square Root of a Complex number: \rightarrow
The square roots of $z=x+$ iy are $\pm\left(\sqrt{\frac{|z|+x}{2}}-i \sqrt{\frac{|z|+x}{2}}\right)$
$\rightarrow \quad$ The square root of 1 are ± 1.
$\rightarrow \quad$ The square root of -1 are $\pm \mathrm{i}$.
Qudratic Equation having a Complex Roots : \rightarrow
$a x^{2}+b x+c=0$ is Quadratic Equation $\Rightarrow D=b^{2}-4 a c$
$\rightarrow \quad$ If $D>0$, root of $a x^{2}+b x+c=0$ are $\frac{-b \pm \sqrt{D}}{2 a}$.
$\rightarrow \quad$ If $D=0$, root of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are $\frac{-\mathrm{b}}{2 \mathrm{a}}$.
$\rightarrow \quad$ If $\mathrm{D}<0$, root of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are $\frac{-\mathrm{b} \pm \mathrm{i} \sqrt{\mathrm{D}}}{2 \mathrm{a}}$.
Fundamental Theorem of Algebra $: \rightarrow$
Every polynomial equationhaving complex coefficient anddegree ≥ 1 has at leastone coplex root.

Cube Roots of Unity :-
The cube roots of unity are $1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}$. Properties of Cube Roots of Unity:

1. Each of two non-real cube roots of unity is the square of each other.

Let $\omega=\frac{-1+\sqrt{3} i}{2}$. Then $\omega^{2}=\frac{-1-\sqrt{3} i}{2}$.
Hence cube roots of unity are $1, \omega, \omega^{2}$.
2. The sum of cube roots unity is 0.i.e. $1+\omega+\omega^{2}=0$.
3. The productof cube roots unity is 1.i.e. $1 \times \omega \times \omega^{2}=1$.
4. Representating $1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}$ in the Argand plane as A, B, C respectively, Thus A, B, C are the vertices of an equilateral triangle.
$\rightarrow \quad$ In general, nth root of 1 forms a regular polygon of n sides, with vertices on the unit circle.
$\rightarrow \quad$ Multiplication of zb I produces rotation of an angle of measure $\frac{\pi}{2}$.

QUADRATIC EQUATIONS : -

$$
a x^{2}+b x+c=0, a \neq 0, a, b, c \in R \text { is called a quadratic }
$$ equation in variable x.

$\rightarrow \Delta$ is called discriminat of quadratic equation, $\Delta=\mathrm{b}^{2}-4 \mathrm{ac}$.
\rightarrow If $\Delta>0$ then two real roots α, β. Where $\alpha, \beta=\frac{-\mathrm{b} \pm \sqrt{\Delta}}{2 \mathrm{a}}$.
\rightarrow If $\Delta=0$ then $\alpha=\beta=\frac{-b}{2 a}$.
\rightarrow If $\Delta<0$ then two complex roots α, β. Where $\alpha, \beta=\frac{-\mathrm{b} \pm \mathrm{i} \sqrt{\Delta}}{2 \mathrm{a}}$.
Nature of the Roots using Discriminant :
(1) If $\Delta>0$ it has positive square root. The roots α, β are real and unequal.
(2) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational numbers and Δ is a square of a non-zero rational number, then α and β are rational and unequal.
(3) If $\Delta=0$ then $\alpha=\beta=\frac{-b}{2 a}$.
(4) If $\Delta<0$ it does not have a real square root, but it does have two
nonreal complex square roots. In this case α and β are complex

Sum and Product of Roots:-
The roots of the quadratic equation $a x^{2}+b x+c=0, a \neq 0, a$,
$b, c \in$
R are α and β

$$
\therefore \alpha+\beta=\frac{-b}{a}, \quad \alpha \beta=\frac{c}{a}
$$

$\rightarrow \quad$ The quadratic equation whose roots are α and β is $x^{2}+(\alpha+\beta) x+\alpha \beta=0$ Symmetric Expressions of Roots : -

$$
\begin{aligned}
& \rightarrow \quad \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\
& \rightarrow \quad(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta \\
& \rightarrow \quad|\alpha-\beta|^{2}=\left|\sqrt{(\alpha-\beta)^{2}}\right|=\left|(\alpha-\beta)^{2}\right| \\
& \rightarrow \quad \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\
& \rightarrow \quad \alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}
\end{aligned}
$$

Type of roots on the basis of coefficients:-

1. $b=0$, the roots are additive inverse, Hence $\alpha+\beta=0$.
2. $\mathrm{a}=\mathrm{c}$, the roots are multiplicative inverse, Hence $\alpha \beta=1$.
3. a, b and c have the same sign, Both the roots are negative.
4. $\mathrm{C}=0$ then one root is zero and second root is $\frac{-b}{a}$.
5. $b=c=0$ then both roots are zero.
6.

EXPONENTIAL FUNCTION: -

Let $a \in R^{+}$. Then the function $f: R \rightarrow R^{+}, f(x)=a^{x}$ is called the exponential function. a is called the base of the function.

Properties of Exponential Function: - let $a>0, a \neq 1, f(x)=a^{x}, x \in R$
(1) The domain of f is R, its codomain and range are R^{+}.
(2) fis one-one. i. e. $a^{x}=a^{y} \Rightarrow x=y$.
(3) f is onto R^{+}.
(4) f is increasing function for $a>1$.
(5) fis decreasing function for $0<a<1$.

We shall accept the following properties of real exponents.
Let $a, b \in R^{+}: x, y \in R$. we have (1) $\quad a^{x} \cdot a^{y}=a^{x+y}$
(2) $\frac{a^{x}}{a^{y}}=a^{x-y}$
(3) $\quad\left(a^{x}\right)^{y}=a^{x y}$
(4) $\quad(a b)^{x}=a^{x} b^{y}$
(5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$.

A Special exponential function: -
$f: R \rightarrow R^{+}, f(x)=e^{x}$, where e is an irrational number (like π) is a special exponential function which plays an important role in higher mathematics.

Approximate value of e is 2.71828... .

Logarithmic Function: -

Let $a \in R^{+}-\{1\}$ and f be the exponential function with the base a,
$f=\left\{(x, y) / y=a^{x}, a \in R^{+}-\{1\}, x \in R, y \in R^{+}\right\}$. Then the inverse of f,
$f^{-1}=\left\{(y, x) / y=a^{x}, a \in R^{+}-\{1\}, x \in R, y \in R^{+}\right\}$is called the logarithmic function to the base a and it is denoted by $\log _{\mathrm{a}}$.

Properties of the Logarithmic Function: -
(1) The domain of logarithmic function is $R+$ and its range is R.
(2) The exponential function and the logarithmic function are inverse of each other.

$$
y=f(x) \Leftrightarrow x=f^{-1}(y), \quad \therefore y=a^{x} \Leftrightarrow x=\log _{a} y
$$

(3) For any $a \in R_{+}-\{1\}, \quad a^{0}=1 \Leftrightarrow \log _{a} 1=0$.
(4) The logarithmic function is one-one on R^{+}.
(5) The logarithmic function is onto on R.
(6) $\quad \log _{a x}$ is an increasing function for $a>1$.
(7) $\log _{\mathrm{a}} \mathrm{x}$ is an decreasing function for $0<\mathrm{a}<1$.
(8) The logarithm to the base 10 is called common logarithm.
(9) The logarithm to the base e is natural (Napierian) logarithm.

Properties of Logarithm: - $a, b \in R^{+}-\{1\}: x, y \in R^{+} ; x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in R^{+}$;
(1) $a^{\log _{a}}=x(x>0)$
(2) $\log _{a} a^{x}=x \quad(x \in R)$
(3) Product Rule:- $\quad \log _{a}(x y)=\log _{a} x+\log _{a} y$

Corollary: $-\log _{a}\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)=\log _{a} x_{1}+\log _{a} x_{2}+\log _{a} x_{3}+\ldots+\log _{a} x_{n}$.

